30 research outputs found

    Combination of C-reactive protein/albumin ratio and time to castration resistance enhances prediction of prognosis for patients with metastatic castration-resistant prostate cancer

    Get PDF
    ObjectiveThis study aimed to identify the prediction accuracy of the combination of C-reactive protein (CRP) albumin ratio (CAR) and time to castration resistance (TTCR) for overall survival (OS) following development of metastatic castration-resistant prostate cancer (mCRPC).MethodsClinical data from 98 mCRPC patients treated at our institution from 2009 to 2021 were retrospectively evaluated. Optimal cutoff values for CAR and TTCR to predict lethality were generated by use of a receiver operating curve and Youden’s index. The Kaplan–Meier method and Cox proportional hazard regression models for OS were used to analyze the prognostic capabilities of CAR and TTCR. Multiple multivariate Cox models were then constructed based on univariate analysis and their accuracy was validated using the concordance index.ResultsThe optimal cutoff values for CAR at the time of mCRPC diagnosis and TTCR were 0.48 and 12 months, respectively. Kaplan–Meier curves indicated that patients with CAR >0.48 or TTCR <12 months had a significantly worse OS (both p < 0.005). Univariate analysis also identified age, hemoglobin, CRP, and performance status as candidate prognostic factors. Furthermore, a multivariate analysis model incorporating those factors and excluding CRP showed CAR and TTCR to be independent prognostic factors. This model had better prognostic accuracy as compared with that containing CRP instead of CAR. The results showed effective stratification of mCRPC patients in terms of OS based on CAR and TTCR (p < 0.0001).ConclusionAlthough further investigation is required, CAR and TTCR used in combination may more accurately predict mCRPC patient prognosis

    A 1 bit binary-decision-diagram adder circuit using single-electron transistors made by selective-area metalorganic vapor-phase epitaxy

    Get PDF
    We demonstrate single-electron operation of a 1 bit adder circuit using GaAs single-electron tunneling transistors (SETs). GaAs dot and wire coupled structures for the fabrication of SETs were grown by a selective-area metalorganic vapor-phase epitaxy technique. The logic circuit was realized based on a binary decision diagram architecture using Coulomb blockade (CB) in GaAs dots and switching operations were achieved in a single-electron mode because of the CB effects. Through this architecture, a 1 bit adder circuit was realized with three SETs, two of which were for AND logic and one with two input gates for exclusive OR (XOR). Both AND and XOR operations were demonstrated at 1.9 K, which indicated successful fabrication of the 1 bit adder

    Fabrication of semiconductor Kagome lattice structure by selective area metalorganic vapor phase epitaxy

    Get PDF
    Artificial two-dimensional semiconductor Kagome lattice structures formed by quantum wires can show ferromagnetism when the flatband is half filled, even though it does not have any magnetic elements. Experimental realization of such a Kagome lattice structure is reported. The structure, with different pattern periods, was formed with GaAs quantum wires by selective area metalorganic vapor phase epitaxy on GaAs (111)B substrates. To overcome the lateral overgrowth and to improve the shape of smaller period pattern, flow rate modulation epitaxy was employed and a GaAs Kagome lattice structure with 1 μm period was effectively grown

    GaAs dot-wire coupled structures grown by selective area metalorganic vapor phase epitaxy and their application to single electron devices

    Get PDF
    We describe a method for fabricating GaAs dot arrays and dot-wire coupled structures having periodic nanofacets which uses selective area metalorganic vapor phase epitaxy. First, a thin GaAs buffer layer and an AlGaAs layer are grown on a masked substrate having wirelike openings with periodic width modulation. The width of AlGaAs wirelike structure is naturally squeezed by the periodic combination of nanofacets, and its top (001) surface is partially isolated by a self-limited region. Next, an AlGaAs/GaAs quantum well structure is fabricated on the substrate to form dots on the narrower top terraces, wires on the wider terraces, and ridge wires in the self-limited region. Cathodoluminescence images clearly showed dot arrays and dot-wire coupled structures were formed using this method. A single electron transistor with the same structure was also fabricated, and clear Coulomb blockade oscillation was observed. We also describe single electron tunneling devices with these dot arrays and dot-wire coupled structures
    corecore